Trie树及Java实现

引言

Trie树,又称为前缀树或字典树,是一种有序树,用于保存关联数组,其中的键通常是字符串。与二叉查找树不同,键不是直接保存在节点中,而是由节点在树中的位置决定。一个节点的所有子孙都有相同的前缀,也就是这个节点对应的字符串,而根节点对应空字符串

如下是一棵典型的Trie树:

Trie的来源是Retrieval,它常用于前缀匹配和词频统计。可能有人要说了,词频统计简单啊,一个hash或者一个堆就可以搞定,但问题来了,如果内存有限呢?还能这么
玩吗?所以这里我们就可以用trie树来压缩下空间,因为公共前缀都是用一个节点保存的。

1.定义

这里为了简化,只考虑了26个小写字母。

首先是节点的定义:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
public class TrieNode {
public TrieNode[] children;
public char data;
public int freq;
public TrieNode() {
//因为有26个字母
children = new TrieNode[26];
freq = 0;
}
}

然后是Trie树的定义:

1
2
3
4
5
6
7
8
9
10
11
public class TrieTree {
private TrieNode root;
public TrieTree(){
root=new TrieNode();
}
...
}

2.插入

由于是26叉树,故可通过charArray[index]-‘a’;来得知字符应该放在哪个孩子中。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
public void insert(String word){
if(TextUtils.isEmpty(word)){
return;
}
insertNode(root,word.toCharArray(),0);
}
private static void insertNode(TrieNode rootNode,char[]charArray,int index){
int k=charArray[index]-'a';
if(k<0||k>25){
throw new RuntimeException("charArray[index] is not a alphabet!");
}
if(rootNode.children[k]==null){
rootNode.children[k]=new TrieNode();
rootNode.children[k].data=charArray[index];
}
if(index==charArray.length-1){
rootNode.children[k].freq++;
return;
}else{
insertNode(rootNode.children[k],charArray,index+1);
}
}

3.移除节点

移除操作中,需要对词频进行减一操作。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
public void remove(String word){
if(TextUtils.isEmpty(word)){
return;
}
remove(root,word.toCharArray(),0);
}
private static void remove(TrieNode rootNode,char[]charArray,int index){
int k=charArray[index]-'a';
if(k<0||k>25){
throw new RuntimeException("charArray[index] is not a alphabet!");
}
if(rootNode.children[k]==null){
//it means we cannot find the word in this tree
return;
}
if(index==charArray.length-1&&rootNode.children[k].freq >0){
rootNode.children[k].freq--;
}
remove(rootNode.children[k],charArray,index+1);
}

4.查找频率

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
public int getFreq(String word){
if(TextUtils.isEmpty(word)){
return 0;
}
return getFreq(root,word.toCharArray(),0);
}
private static int getFreq(TrieNode rootNode,char[]charArray,int index){
int k=charArray[index]-'a';
if(k<0||k>25){
throw new RuntimeException("charArray[index] is not a alphabet!");
}
//it means the word is not in the tree
if(rootNode.children[k]==null){
return 0;
}
if(index==charArray.length-1){
return rootNode.children[k].freq;
}
return getFreq(rootNode.children[k],charArray,index+1);
}

5.测试

测试代码如下:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
public static void test(){
TrieTree trieTree=new TrieTree();
String sourceStr="Democratic presumptive nominee Hillary Clintons campaign posed pounced on Trumps assertion that British term monetary turmoil might benefit his business venture in Scotland";
//String sourceStr="the that";
sourceStr=sourceStr.toLowerCase();
String[]strArray=sourceStr.split(" ");
for(String str:strArray){
trieTree.insert(str);
}
String sourceStr2="Every president is tested by world events But Donald Trump thinks about how is his golf resort can profit from that";
sourceStr2=sourceStr2.toLowerCase();
String[]strArray2=sourceStr2.split(" ");
for(String str:strArray2){
trieTree.insert(str);
}
BinaryTree.print("frequence of 'that':"+trieTree.getFreq("that"));
BinaryTree.print("\nfrequence of 'donald':"+trieTree.getFreq("donald"));
trieTree.remove("that");
BinaryTree.print("\nafter remove 'that' once,freq of 'that':"+trieTree.getFreq("that"));
trieTree.remove("that");
BinaryTree.print("\nafter remove 'that' twice,freq of 'that':"+trieTree.getFreq("that"));
trieTree.remove("donald");
BinaryTree.print("\nafter remove 'donald' once,freq of 'donald':"+trieTree.getFreq("donald"));
BinaryTree.reallyStartPrint();
}

测试结果如下: